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Abstract
The simulations on edge-localized modes (ELMs) with six-field peeling–ballooning (P–B) modes using the BOUT++
code are reported in this paper. This six-field model based on the full Braginskii equations are developed to simulate
self-consistent turbulence and transport between ELMs. Through the comparison with the previous three-field two-
fluid model, P–B instability, ion diamagnetic effects, resistivity and hyper-resistivity are found to be the dominant
physics during ELMs. The additional physics, such as ion acoustic waves, thermal conductivities, Hall effects,
toroidal compressibility and electron–ion friction, are less important in this process. Through the simulations within
different equilibrium temperature profiles but with the same pressure and current, the particle loss of ions contributes
the least to the total ELM size. The ELM size will be smaller for low-density cases. The study of convective particle
and heat flux indicates that the peak of radial particle flux is obviously related to the ELM filaments burst events.
The analysis of radial transport coefficients indicates that the ELM size is mainly determined by the energy loss
at the crash phase. The typical values for transport coefficients in the saturation phase after ELM crashes are
Dr ∼ 200 m2 s−1, χir ∼ χer ∼ 40 m2 s−1. The turbulent zonal flow, which is mainly driven by the Reynolds stress
and suppressed by ion diamagnetic terms, regulates the turbulence from the ELM crash phase to the quasi-steady
state for large ELM cases.

(Some figures may appear in colour only in the online journal)

1. Introduction

To assess the performance requirements of future tokamaks,
such as ITER, one must study [1] discharges in the high edge
particle and energy confinement regime known as H-mode [2].
In ELMy H-mode, edge-localized modes (ELMs) are triggered
by ideal magneto-hydrodynamic (MHD) instabilities. The
onset of the type I ELM is successfully explained by ideal
peeling–ballooning (P–B) theory in the pedestal [3], whereby
the steep pressure gradients drive ballooning modes and
bootstrap current generates peeling modes. The understanding
of the linear P–B mode has been well developed by study with
numerical codes such as ELITE [4, 5] and GATO [6]. However,
linear stability analysis alone is not enough to describe the
whole picture of ELM physics. The nonlinear phase is also
very important for ELM studies. Some 3D codes have been
developed for the nonlinear simulation of ELMs, including
NIMROD [7, 8], BOUT [9, 10], JOREK [11], etc.

The BOUT++ code has successfully simulated the
nonlinear crash phase of ELMs [12–15]. In the previous work,
anomalous electron viscosity or hyper-resistivity is included in
Ohm’s law. This method resolves the computational difficulty

of the fine resolution requirement for ideal MHD instabilities
with high Lundquist number. The four-field two-fluid model
has been developed as the extension of the previous three-field
P–B model with the addition of perturbed parallel velocity. For
linear runs we find this parallel velocity perturbation could
stabilize the P–B modes and decrease the linear growth rate
and ELM size [16]. The E ×B shear flow plays a dual role on
P–B modes [17]. On the one hand, the flow shear can stabilize
high-n P–B modes and twist the mode in the poloidal direction,
constraining the mode’s radial extent and reducing the size of
the corresponding ELM. On the other hand, the shear flow also
introduces the Kelvin–Helmholtz mode, which can destabilize
the P–B modes. The theoretical and simulation results of
a gyro-Landau-fluid (GLF) extension of the BOUT++ code
are summarized in [18], which contributes to increasing the
physics understanding of ELMs.

In this paper we develop the nonlinear simulations of
the six-field P–B model with BOUT++ code based on the
reduced MHD model [20]. This paper is organized in the
following way. The physics models and the formula used in
our simulations are in section 2. Section 3 shows the linear
and nonlinear simulations results. The comparisons among
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the six-field, five-field and three-field models are shown at
the beginning of this section. Then the effects of normalized
density on ELM size, density flux and heat flux are discussed.
The calculations of transport coefficients for radial particle
and heat fluxes follow. At the end of this section, the turbulent
zonal flow is discussed. The last section is the summary.

2. Physics models and equations

In this paper, we simulate the nonlinear collapse process
of edge pedestal plasmas using a six-field two-fluid model
in tokamak configuration. Starting from the Braginskii
equations, within the flute reduction, our six-field model is
constituted of six evolving equations based on [20, 19], which
are written in drift ordering as
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The variables in these equations are defined as
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In this model, all the variables can be written as F = F0 + F1,
where F0 represents for the equilibrium part of arbitrary
field quantity and F1 is the perturbed component. Here A‖
is the perturbed parallel vector potential, b = b0 + b1 =
b0 + ∇A‖ × b0/B is the unit vector of the total magnetic field,
κ = b0 · �b0. The definition of pressure in this model is
Pj = Pj0 + pj1 = kBnjTj , pj1 = nj0Tj1 + nj1Tj0 + nj1Tj1

for j species. VE = (b0 × ∇⊥�)/B0, and � = �0 + φ is the
total electric potential. Note that V‖i, V‖e and � only have the
perturbed part. Here �i = ZieB/mi is the ion gyro frequency,
∇‖ = ∇‖0 −b0 ×∇A‖/B0, ∇⊥ = ∇−b∇‖ and ∇‖0 = b0 ·∇.

The terms in two square brackets in equation (1) represent
the gyro-viscous terms brought in by the finite ion Larmor
radius (FLR) effects. These terms are necessary for the two-
fluid models to keep the whole FLR stabilizing effects when
ion density gradient is steep and temperature is high [18]. For
this model, the net equilibrium zonal flow is set to be zero. If
the net shear flow is not zero, it can stabilize high-n modes and
introduce Kelvin–Helmholtz term to destabilize P–B modes,
as discussed in [17]. The effects of turbulent zonal flow will
be discussed in section 3.5.

This model is a simplification of the equations in the
BOUT [20] code. The only difference is that the pressure
is assumed to be isotropic here, so µ‖i∇2

‖0� is the simple form
of parallel viscosity and perpendicular viscosity is neglected
in our model. In addition, the equations are written in SI
units. η is defined as the parallel Spitzer resistivity, ηSP =
0.51 × 1.03 × 10−4Zi ln �T −3/2 � m−1. Although hyper-
resistivity ηH, also known as electron viscosity, is generally
negligibly small in collisional plasmas, it can be significant
in a collisionless plasma. From nonlinear simulations we
have found that the P–B modes trigger magnetic reconnection,
which drives the collapse of the pedestal pressure. The hyper-
resistivity is found to limit the radial spreading of ELMs by
facilitating magnetic reconnection [15]. Either resistivity η or
hyper-resistivity ηH can break the frozen-in flux constraint of
ideal MHD theory.

The symbols κ‖i = 3.9niv
2
th,i/νi and κ‖e = 3.2nev

2
th,e/νe

are Spitzer–Härm parallel thermal conductivities, where vth,j

is the thermal velocity for j particle and νj is the collision
rate. Since in the hot pedestal the collisionality is low and
this classic κ‖j is not valid for the weakly collisional plasmas,
the free-streaming expression κfs,j = njvth,j qR0, where q

is the local safety factor, is taken into account of kinetic
effects. Therefore, in the simulations the effective thermal
conductivities are written as

κeff,j = κ‖j κfs,j

κ‖j + κfs,j
. (10)
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Within this form, κeff,j is determined by κ‖j at the bottom of
the pedestal region where plasmas are in the collisional limit,
and is dominant by κfs,j in the high mean free path condition.
The parallel diffusion terms should be evaluated along the
total magnetic field lines. In practice this is challenging since
κef

‖j � κ⊥j and κ‖j∇‖ � 0. For small δB perturbation, this
is a reasonable approximation. Note that the perpendicular
classical diffusivities are neglected here because in this typical
P–B unstable equilibrium, κ⊥ � κ‖. Therefore, we believe
that the radial diffusion will not affect the simulation results in
the linear phase and even in the early nonlinear phase, but in
the late nonlinear phase, κ⊥ may be important to transport and
turbulent processes on the transport time scale.

Equations (1)–(9) are solved using the field aligned (flux)
coordinate system (x, y, z) with the shift radial derivatives
[13]. In this coordinate system x is the radial direction and
is defined as x = (ψ − ψaxis)/(ψseparatrix − ψaxis), which is the
normalized poloidal flux and ψ is the poloidal magnetic flux, y
is the parallel direction with a twisted-shift boundary condition
and z is the bi-normal direction. Hereafter, we use � = x

to represent the normalized magnetic flux for simplification.
For conclusion, compared with the previous three-field model,
this set of equations include the additional physics, such as ion
acoustic waves, thermal conductivities, Hall effects, toroidal
compressibility and electron–ion friction.

Compared with other similar models, for example,
the electrostatic model in [21], our six-field model is
electromagnetic so that it is able to simulate the magnetic
reconnection triggered by P–B modes which leads to the
pedestal collapse [12]. The finite Larmor radius effects are also
taken into account in our model, which is neglected in [21].
Compared with the five-field model in [22], the evolutions of
electron temperature and parallel thermal diffusivities are taken
into consideration in our model because the parallel thermal
diffusivity of electrons is fairly large to stabilize the P–B modes
and constrain the radial spread of the perturbations [23]. The
gyro-viscous terms in equation (1) are added into our model
because it is necessary to be kept in the two-fluid model to
represent the FLR effects. The parallel diffusion terms in the
temperature equation due to the perturbed magnetic field are
neglected in our model due to the perturbed magnetic field.

In this paper, we use two shifted circular cross-section
toroidal equilibria with an aspect ratio of 2.9 generated by the
TOQ code [25]. The parameters of both equilibria are minor
radius a = 1.17 m, major radius R0 = 3.44 m, magnetic field
on axis B0 = 1.99 T and q95 = 2.57. Equilibrium 1 has a
normalized pressure gradient length scale Lp/a = 1.68×10−2,
a pedestal poloidal pressure βt0 = 1.92 × 10−2, and a
normalized pedestal width Lped/a = 5.18×10−2. On the other
hand, equilibrium 2 has the parameter as Lp/a = 1.56×10−2,
βt0 = 1.94 × 10−2 and Lped/a = 4.86 × 10−2. Equilibrium
2 is much more unstable than the first one for P–B modes.
Both equilibria are ideal ballooning unstable. Equilibrium
2 has been well studied by the BOUT++ three-field model
[12, 16, 17]. The MHD simulations without FLR effects on
both cases are discussed in [26]. The definition of the plasma
edge is somewhat arbitrary since here there is no scrape-off
layer (SOL), and so � = 1 is defined as the position where the
equilibrium plasma pressure gradient and parallel current fall
to zero.

Figure 1. Profiles of background pressure P0 and safety factor q of
equilibria 1 and 2. The black solid curve is P0 for equilibrium 2 and
the red solid curve is for equilibrium 1. The black dashed curve is q
for equilibrium 2 and the red dashed one is for equilibrium 1.

3. Simulation results and discussions

For both equilibrium mentioned in previous section, the
equilibrium pressure profile P0 (figure 1) is separated into ion
density ni0, ion and electron temperature, Ti0 and Te0. For
the quasi-neutral condition, Zini0 = ne0, where Zi is ion
charge and ne0 is equilibrium electron density. Here we assume
Ti0 = Te0. In the analysis below, we choose the analytical
profiles of ni0 as

ni0(x) = (nheight × nped)

2

[
1 − tanh

(
x − xped

�xped

)]
+nave × nped, (11)

here nped is the ion number density on the top of the pedestal
region, nave is the ratio to control the bottom amplitude of ni0

outside the separatrix, and nheight is the coefficient to specify
the gradient of ni0. xped and �xped represent the position
of peak gradient and the width of the pedestal region of P0,
respectively. For both cases, we have xped = 0.633 and
�xped = 0.1. Note that if ni0 is outside �n = 1, the profile is
set to be a constant value.

In the BOUT++ framework, the spatial discretizations
are the finite differencing method in the x and y directions,
and Fourier decomposition in the z direction. In this
model, the fourth order central differencing method is adopted
for first and second order derivatives. The third order
WENO scheme [27] is applied for convective terms and
the Arakawa scheme [28] is for the magnetic flutter term
b1 = −∇A‖ × b0/B. All the partial differential equations
in the BOUT++ framework are solved via a method-of-lines
approach and an implicit backward differencing scheme using
a Newton–Krylov iteration to advance the system in time
via a fully implicit Newton–Krylov solver PVODE [29]. In
our simulations, the resolutions in the x and y directions are
516 × 64. For linear simulations, the grid number in the z

direction is nz = 17 in 1/n torus where n is the toroidal mode
number. For nonlinear runnings nz = 65 in one-fifth torus
which is simulated.

3.1. Comparison with the three-field and five-field models

In the BOUT++ framework, a series of the two-fluid models
have been developed to simulate ELM crashes within the

3



Nucl. Fusion 53 (2013) 073009 T.Y. Xia et al

P–B model, such as the three-field [12] and five-field [23]
model. The three-field two-fluid model, which evolves P ,
A‖ and � , is the simplest model to describe the P–B mode.
Drift waves, ion-sonic waves, Hall MHD effects and magnetic
pumping terms are all neglected. The five-field model is
derived as the extension of the previous three-field two-fluid
model for the reason of studying the effects of ion density and
parallel thermal diffusivities during P–B modes. Therefore, the
pressure equation is separated into ion density, ion and electron
temperature equations. The effects of Spitzer–Härm thermal
conductivities are also discussed in this model. Compared
with these two models, this six-field model includes additional
physics, such as drift waves, ion acoustic waves, Hall MHD
effects, toroidal compressibility and ion–electron friction, thus
this model can simulate both meso-scale MHD events and
micro-scale drift-wave turbulence in collisional regimes.

In this comparison, both equilibrium 1 and equilibrium 2
are chosen. The density profile is chosen with the coefficients
nave = 0.2 and nheight = 0.55 in equation (11) for
equilibrium 2. Then the temperature has the value 1.2 keV at
the pedestal top and 0.05 keV at the bottom. Figure 2(a) gives
the comparison of the linear growth rate for this highly P–B
unstable case. All three models show the similar instability
island on toroidal mode number n range, from n ∼ 3 or 5 to
n ∼ 40. The peak growth rates are also similar, especially
for the three-field and six-field model. This difference is less
than 10%. Compared with the five-field model, despite the fact
that electron Hall effects can destabilize the P–B modes [16],
both thermal conductivities [23] and gyro-viscous terms show
effective stabilization. The other effects, such as thermal force
and electron–ion friction, do not affect the linear growth rate
significantly. The data in figure 2(a) is the same as that in
table 1 of [18]. The differences of amplitude in the figure are
due to the normalization. Here the normalization density ni0 =
0.46×1020 m−3 is used in the calculation of Alfvén frequency
ωA as in ideal MHD simulations (the dashed-diamond curve
in figure 2(a)). While in [18] the normalization density
ni0 = 1020 m−3 is used. Figure 2(b) shows the linear growth
rate comparison of the three-field and six-field models for
equilibrium 1. The coefficients of density is chosen as nheight =
0.0728 and nave = 0.04. For the three-field model, as the black
curve shows in panel (b), the instability island is narrower than
the six-field model because the additional terms do enhance
the instability in this marginal stable equilibrium, which is
opposite to the highly unstable case, where other physics in
the six-field model plays minimal roles to the linear growth.

For nonlinear simulations, the gyro-viscous terms are
added into both the three-field and five-field model because
of its importance for two-fluid simulations [18]. In figure 2(c),
the time evolution of ELM size for both equilibria 1 and 2 of
the three-field, five-field and six-field model is shown. The
ELM size here uses the same definition as in [12]. It is defined
as �th

ped = �WPED/Wped and represents the ratio of the ELM

energy loss �WPED = (3/2)
∫ Rout

Rin

∮
dR dθ(P0 − 〈P 〉ζ ) to the

pedestal stored energy Wped = (3/2)
∫ Rout

Rin

∮
dR dθP0. The

symbol 〈〉ζ means the average over the bi-normal periodic
coordinate. The lower integral limit is the pedestal inner
radial boundary Rin, while the upper limit is the radial position
of the peak pressure gradient Rout. The ELM size can be
calculated from each nonlinear simulation. The physics on

Figure 2. (a) Comparison of linear growth rate among our
three-field, five-field and six-field model on strong unstable
equilibrium 2. (b) Comparison of linear growth rate between
three-field and six-field model on weak unstable equilibrium 1.
(c) Time evolutions of ELM size among these models for both
equilibria. For equilibrium 2, both three-field and six-field models
show the consistent results at linear and nonlinear phases, while
additional terms of six-field do enhance the instability in
equilibrium 1. The six-field model yields smaller ELM size in both
equilibria.

the control of ELM size after the onset of each ELM (type-I)
is still under investigation. In the previous studies, the ELM
size is found to be weakly sensitive to the hyper-resistivity
for large ELMs [18] and insensitive to the resistivity [12].
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For a ballooning-dominated equilibrium the FLR effect can
significantly decrease the ELM size when the pedestal ion
temperature increases because high-n modes are stabilized
[18]. In figure 2(c), the solid curves are for equilibrium 2
and the dashed curves are for equilibrium 1. The black solid
curve is the three-field model without the gyro-viscous term
and the red solid one is the same model with gyro-viscosity.
The five-field model with gyro-viscous terms is drawn as the
green solid curve and the six-field one as the blue solid curve.
All these models show the similar time evolution that there
is a slow increasing or saturation phase after the fast increase
in ELM size. For the three-field model, the effects of gyro-
viscous is significant and its ELM size is ∼2% less than the six-
field model at the nonlinear saturation phase. The ELM size for
the five-field model still exceeds the three-field one with gyro-
viscosity, despite it having the smallest ELM size for most
of the time. Although the six-field model includes so many
additional effects compared with the original three-field model,
the ELM size is just 11% less, which is the smallest difference
among these models. For equilibrium 1, the P–B unstable case
with nave = 0.2 and nheight = 0.364 are chosen here. As the
dashed curves show in figure 2(c), the saturated ELM size of
the six-field model is smaller than the three-field one. The
absolute amount of the ELM size difference between the two
models is around 3%, very similar to 2% of equilibrium 2.

Through these comparisons, we can see that although the
equations of the six-field model are very different from the
original three-field model, both linear and nonlinear activities
of P–B instability are still close. This result indicates that
the P–B instability, ion diamagnetic effects, resistivity and
hyper-resistivity, which can be well described by our three-
field model, are the dominant physics effects during the
burst of ELMs. So the three-field model is good enough to
simulate P–B instabilities and ELM crashes. The additional
physics, such as ion acoustic waves, thermal conductivities,
Hall effects, toroidal compressibility and electron–ion friction,
are less important in this process. However, they are still very
important and necessary to simulate the power depositions on
the plasma-facing component, self-consistent turbulence and
transport between ELMs for the rebuild of the pedestal, which
is also the capability of this six-field model.

3.2. Linear simulations on equilibrium 1

For the purpose of studying ELM crashes, the turbulence and
transport after that, equilibrium 1 is chosen for the following
simulations. As introduced in section 2, this equilibrium is
unstable for ideal P–B modes, as shown using the pink dashed
curve in figure 3, but less unstable than the equilibrium 2
case. The six-field two-fluid simulations for this more unstable
equilibrium case are described in [18]. The green dashed
star curve is the linear growth rate derived from the ELITE
code for the same equilibrium. The ideal instability occurs at
the similar toroidal harmonics for both codes. BOUT++ also
obtains the similar linear growth rate as ELITE at high toroidal
mode number n. However, as shown by the black triangle
curve in figure 3, this equilibrium is almost stable for P–B
modes when ni0 = 1019 m−3 without resistivity. Within six-
field simulations, the similar temperature profiles are applied
here as section 3.1, the temperature has the value 1.2 keV

Figure 3. Linear growth rate for equilibrium 1. The three-field
model with constant density shows this equilibrium is marginal
stable. However, the six-field model shows that with certain density
profile, this equilibrium is unstable for P–B modes.

at the pedestal top. The density coefficients are chosen as
nave = 0.2 and nheight = 0.364. The density at the pedestal top
is 5.6 × 1019 m−3, which is larger than the value for the three-
field simulations. It indicates that the diamagnetic stabilization
is not strong enough to suppress the ideal P–B modes. The
results are shown as the red triangle curve in figure 3. If
the Spitzer resistivity is taken into account, the linear growth
rate does not change, as shown by the blue diamond curve
in figure 3. This indicates that this instability is really P–B
modes, not resistive ballooning modes. The cyan square curve
shows the growth rate derived by the six-field model with both
Spitzer resistivity and hyper-resistivity. The hyper-Lundquist
number is set to be a constant SH = µ0R0VA/ηH = 1013,
where VA is Alfvén speed. This large SH does not affect the
linear growth rate, so the instability is not triggered by hyper-
resistivity modes. In the following nonlinear simulations, this
constant SH will be applied.

3.3. Density scanning of nonlinear simulations

In this subsection, we simulate five different profiles of ion
density, the coefficients are listed in table 1. These coefficients
represent the different electron temperatures at the top of
the pedestal. As shown in figure 4, all the cases with
these coefficients are unstable except the Te0,top = 9 keV.
The cases with Te0 = 3, 1.2 and 0.6 keV are typical P–B
modes and Te0,top = 6 keV are dominated by marginal stable
ballooning modes. The Te0,top = 9 keV case is a small resistive
ballooning mode since it is nearly stabilized by the strong ion
diamagnetic effects. The equilibrium profiles of a different set
of coefficients are plotted as the dashed curves in figure 5.
Notice that all of these profiles are derived from the same
equilibrium generated by the TOQ code. Both the pressure and
current profiles are kept the same for all of these simulations.

The solid curves in figures 5(a)–(c) are the time-averaged
radial profiles at the outer mid-plane during the saturation
phase. In the saturation phase, the crash event of ELMs are
finished and the profiles of densities, temperatures, current
and parallel flow are in the quasi-steady state. Turbulence and
transport are the dominant processes during this phase. The
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Table 1. Coefficients of the five density profiles. Te0.top is the
equilibrium electron temperature at the pedestal top, and ni0,top is the
equilibrium ion density at this region.

Te0,top (keV) ni0,top/1020 (m−3) nheight nave

Case 1 9 0.08 0.0485 0.0267
Case 2 6 0.11 0.0728 0.04
Case 3 3 0.22 0.1456 0.08
Case 4 1.2 0.56 0.364 0.2
Case 5 0.6 1.13 0.728 0.4

Figure 4. Linear growth rate versus toroidal mode number for the
temperature scan.

evolution is so slow compared with the ELM crash event that
it is very difficult to see the changes of the profiles on the
Alfvén timescale. From figure 5, we can see that all the solid
curves show a more gentle gradient than the dashed curves
at the pedestal region. Such gentle gradients are not able to
trigger P–B modes any more. These time-averaged profiles
represent that of L-mode-like state between ELMs. If in the
ELMy H-mode discharge, the right balance of sources and the
turbulence and transport processes will lead to the slow rebuild
of the steep gradient of the profiles after the collapse.

The parallel thermal diffusivity is defined as χ‖j =
κeff,j /(kBnj ). References [18, 23] show that thermal
diffusivities are very effective at damping the perturbations at
the pedestal top. In six-field simulations, we also get similar
results. As shown in figure 6(a), the higher temperature leads
to higher thermal velocity. At the top of the pedestal, the
equilibrium is still in the low collisional limit, so the free-
streaming of particles is dominant and this leads to a higher
thermal diffusivity. The larger thermal diffusivity then leads
to a larger damping effect at the top region. This effect also
influences the ELM size. The black star curve in figure 6(b)
gives the dependence of ELM size on the normalized separatrix
density. In the figure, the normalized separatrix density
is defined as nsep/nG and the Greenwald density is nG =
Ip/(πa2). For all the cases plotted here, the instability is
dominated by ballooning-dominant modes. Two factors can
influence the value of ELM size. First, ELM size gets increased
for higher density because of the smaller thermal diffusivity.
Second, when nsep/nG is low, the diamagnetic stabilization
becomes stronger and suppresses the perturbations of high-n
mode, while the high-n mode perturbations can lead to more
energy loss during ELMs. The red, green and blue curves in

e
e

e

e

e

e
e

e
e

e

e

e

e

e

e

Figure 5. (a) Averaged ion density profiles at the saturation phase
for the different cases. (b) Averaged ion temperature profiles.
(c) Averaged electron temperature profiles. The dotted–dashed
curves are the equilibrium profiles at the start of the simulations
and the solid curves are the time-averaged profiles during the
saturation phase.

figure 6(b) are ELM size for ni, Ti and Te, respectively, which
is derived using the similar method as ELM size calculation in
previous analysis. The ELM sizes on the ion channel become
smaller when nsep/nG is low, which are similar to the total
one. From this figure we can see that energy loss during ELM
is mainly contributed by ion temperature. The ion particle loss
contributes the least to the total ELM size and it is also the
least affected variable by the normalized density. Note that
this simulation shows the opposite trend to experiments [30]
because we use the same equilibrium which is dominated by
ballooning modes. However, the bootstrap current will be
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much larger for the low nsep/nG limit based on the Sauter
formula [31, 32]. Such a large bootstrap current may trigger
stronger peeling modes and lead to a larger ELM size.

3.4. Particle, heat flux and transport coefficients

One important capability of the six-field model is to study the
self-consistent turbulence and transport between ELMs. In
this subsection, the conductive radial ion density flux �ir and
radial heat flux qir are discussed. Their definitions are

�ir = 〈niVr〉 =
〈
ni

(b0 × ∇�)r

B0

〉
+ 〈niV‖ib1r〉, (12)

qjr = 〈TjVr〉 = 〈njTj

(b0 × ∇�)r

B0
〉 + 〈njTjV‖j b1r〉. (13)

Here 〈〉 means flux surface average and 〈f 〉 = 1/(2π)2
∫ 2π

0 dφ∫ 2π

0 f dθ . In these definitions the fluxes are constituted of two
terms: the first term in equation (12) is the radial convective
E × B drift and the second term is the non-zero averaged flux
induced by the guiding centre motion along a magnetic field
B which has an in-phase spatially fluttering radial magnetic
component b1r [33]. The comparison of �ir with the different
profiles listed in table 1 is shown in figure 7. Panel (a) gives the
time evolutions of the density flux of ions at the peak pressure
gradient position. Panel (b) shows the radial profiles of�ir . For
the large ELM cases, as the cyan, blue, green and red curves
show in panel (a), there are sharp peaks at the beginning of
the nonlinear phase, which stands for the crashes of ELMs.
The wider peak comes with the larger density case. However,
no such obvious peaks are shown on black curves since the
ELM size is very small. Both panels indicate that the radial
particle flux almost has similar amplitudes at the peak pressure
gradient position during the quasi-steady phase for all the
cases.

We believe that the peak of the curve, which means the
burst and crash of the particle flux in the radial direction,
indicates a pump-out of ELM filaments. Figure 8 gives the
time correlations between the ELM filaments and flux burst
for the Te0 = 0.6 keV case. The upper figure is the time
evolution of density profiles. There are two burst events of
ELM filaments shown in this figure. The first one happens at
t = 160τA and the second one is at t = 250τA. These two
filaments are labelled by the black dashed curves. Meanwhile,
the radial particle flux at the pressure peak gradient region with
� = 0.855, as the lower panel of figure 8, also shows the burst
events at the same time. The first peak is related to the first
filament event and the third one is with the second filament.
From this figure, we can say that the first filament is the major
burst. The third peak is much smaller than the first one, thus
the second filament is a micro-burst. The second peak of the
particle flux is correlated with the disappearance of the filament
which happens at t = 190τA. After t = 250τA, there is nearly
no obvious peak for the particle flux, the whole system goes
into the saturation phase and the density profile acts like that
of L-mode. There are no ELM filaments burst and turbulence
transport is the dominant physics in this phase.

The time evolutions of the radial heat flux of ions qir at
the peak pressure gradient position are shown in figure 9(a),
and those for qer are shown in panel (c). Panels (b) and (d)

Figure 8. Relation between ELM filaments blow-up and particle
flux for Te0 = 0.6 keV. The upper figure is the time evolution of the
radial profile of ni at the outer mid-plane. The unit is 1020 m−3. The
lower figure is the time evolution of �i at the density peak gradient
region. Two dashed curves show that the first ELM burst is
correlated with the first peak of �i and the latter micro-burst is also
correlated with the peak of �i.

are the radial profiles of flux averaged qir and qer . In figure 9,
we can see that the higher temperature cases show larger radial
heat flux, especially at the saturation phase, while this trend is
not obvious at the crash phase. The radial profiles indicate that
both qir and qer are peaked at the temperature peak gradient
region, which is at the range around normalized � = 0.855.
At the inner side of the peak gradient region, the heat flux is
almost one order of magnitude smaller. qjr decreases quickly
in the SOL region where ψ > 1 because the profiles here are
all flat and no source can drive the radial transport. The second
peaks for the heat fluxes are found at � = 0.5 in figures 9(b)
and (d) where there is a peak of ion temperature gradient
(ITG). Therefore, this peak is driven by the ITG turbulence.
Further analysis indicates that the perturbations φ and Ti1 are
90 degrees out-phase and show the drift-like behaviours. The
second peaks on electron heat fluxes are caused by the same
reason because we use the same E×B drift and Te0 = Ti0 in the
calculations.

In the integrated modelling for plasma profile evolutions,
the radial transport coefficients are considered to be very
important in the process of rebuilding the pedestal. This six-
field model can obtain these coefficients in the saturation phase
after ELM crashes. The transport coefficients of particle flux
Dr is defined as

Dr = − �ir

〈 ∂ni
∂r

〉 , (14)

where the denominator is the radial derivative of the flux
surface average of density and r is the minor radius. The ion
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Figure 6. (a) Radial profiles of parallel electron thermal diffusivities χ‖e for different cases. The dashed curves are the initial parallel
thermal diffusivities at the start of the simulations and the solid curves are the time averaged χ‖e during the saturation phase. (b) ELM size
dependence on the normalized density for different channels. The black star curve is the total ELM size. The red diamond is for ion density
loss ratio, the green triangle is ion temperature loss ratio and the blue square is electron temperature. The overall trends show that the ELM
size becomes larger when nsep/nG increases.
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Figure 7. (a) Time evolution of the particle flux of ions at the peak pressure gradient position. (b) Radial profiles of particle flux of ions at
the saturation phase. Both panels indicate that the radial particle flux is larger at the pressure peak gradient region when temperature is low
or nsep/nG is high.

and electron radial heat transport coefficients χir and χer are
written as

χjr = − qj

〈 ∂Tj

∂r
〉
. (15)

The radial profiles for χir and χer are shown in figure 10(a)
and (b). In the figures, all the transport coefficients change
their sign at � = 0.82, where the second-order derivative of
pressure or the negative perturbation of P–B modes gets its
extreme value. Inside this point, the perturbations propagate
to the core region, while the fluxes change their directions
to the SOL region outside this point. Such effects will lead
to the more gentle profiles of the pedestal region. However,
compared with the parallel thermal diffusivities shown in
figure 6(a), these transport coefficients are much smaller. The
timescale for this radial transport is TDr � a2/Dr ∼ 0.001 s,
which is much larger than Alfvén time τA = 1.12 × 10−6 s−1.
Therefore, it is very difficult to see such slow transport
behaviours in the Alfvén timescale and the status of the system
is in the quasi-steady state.

Figure 11(a) shows the relation between the fluxes and
normalized density. The dashed curves are time averaged

during the ELM crash phase and the solid curves are at the
saturation phase. The definition of the period of the ELM crash
phase is the time interval of the largest two peaks on the time
tracing plots of the fluxes in figures 7 and 9, and the saturation
phase is defined as the period that the amplitudes of the particle
fluxes just oscillate around a certain value and do not show any
sudden changes. The time interval for different cases are listed
in table 2. For �ir , its amplitude is larger when the ratio nsep/nG

is higher at the ELM crash phase, while at the saturation phase,
the amplitudes of �ir drop dramatically for large density. This
drop effect is not obvious for the small density case. As shown
by the analysis in figure 8, the radial particle flux here is related
to the particle loss during ELMs. For the larger density case
at the ELM crash phase, the amplitude of �ir is larger and the
time interval of the ELM crash phase is also longer, as shown
in figure 7(a). Therefore, more particle loss is induced by both
larger �ir and longer time. Although at the saturation phase,
the amplitudes of �ir drop to be comparable for all density
cases, the time integral of the particle loss still leads to the
larger ELM size in the particle channel. The blue and red
curves show the change in heat flux for ions and electrons.
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Figure 9. (a) Evolution of the radial heat flux of ions qir at the peak pressure gradient position. (b) Radial profile of qir at the saturation
phase. (c) Evolution of the radial heat flux of electrons qer at the peak pressure gradient position. (d) Radial profile of flux averaged qer at
the saturation phase. The larger temperature cases show larger radial heat flux.

Similar to �ir , the amplitudes of qjr also decrease a lot for
high densities and drop little for low densities. Based on the
transport equation of energy, the ELM size for the temperature
channel can be written as∫ Rout

Rin

∮
dR dθ(Tj0 − 〈Tj 〉ζ )∫ Rout

Rin

∮
dR dθTj0

�
∫

dt
[∮

dS(〈qjr〉ζ − q0
jr )

]
∫ Rout

Rin

∮
dR dθTj0

.

(16)

At the ELM crash phase, the heat fluxes nearly do not change
with density, so the energy loss during the same time interval
are comparable for different cases. However, the higher
density leads to lower temperature in the pedestal region since
the pressure is fixed for the scan, so the ratio of energy loss for
higher density is also larger because of the lower temperature
Tj0 in the denominator.

The dependence of transport coefficients on the ratio
nsep/nG is shown in figure 11(b). The black triangle curve
is the particle transport coefficients Dr . The red and blue
diamond curves are for χir and χer , respectively. The dashed
curves are time averaged during the ELM crash phase and the
solid curves are at the saturation phase. The values are all
measured at the pressure peak gradient region. This figure
shows that these transport coefficients have similar trends
at the ELM crash phase. When the ratio nsep/nG is high,
which means the high density cases and large P–B unstable

ELMs, the coefficients are larger, which shows the same trend
as the ELM size in figure 6(b). Similar to the particle and
heat fluxes, the amplitudes of the coefficients also decrease
dramatically at high-density cases. Compared with χir and
χer , at the ELM crash phase, we can see χir > χer . This
indicates the larger energy loss through the ion channel, which
is consistent with the ELM size, figure 6(b). At the saturation
phase, although we have χir < χer , the value is much smaller
and most of the energy loss has already happened at the ELM
crash phase. Therefore, the ELM size is mainly determined
by the energy loss at the crash phase, the contribution of the
quasi-steady state after the ELM crash is much smaller. The
reason why Dir is much larger than χjr is because the gradient
of density is much more gentle than temperatures, and the
scale length of the density to temperature is Ln/LT i � 5 in
our simulations. At the saturation phase, the typical values
for transport coefficients at the saturation phase are Dr ∼
200 m2 s−1, χir ∼ χer ∼ 40 m2 s−1.

3.5. Turbulent zonal flow during ELMs

In this section we investigate the role of zonal flow during and
after ELM crashes. As shown in figure 12, the time evolutions
of the kinetic energy Ek and the magnetic energy Em are plotted
for two cases listed in table 1. Case 4 represents a typical large
ELM case and case 1 is a small one. Here the definition of the
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Figure 10. (a) Radial profiles of ion heat flux transport coefficients χir for different cases listed in table 1. (b) Radial profiles for the
electron heat flux transport coefficients χer .

Figure 11. (a) Amplitude of the particle flux �ir and the heat flux qjr versus normalized density. (b) Radial transport coefficients of particle
flux Dr , heat flux χir and χer versus nsep/nG. The black triangle curve is for Dr , the red diamond is for χir and the blue diamond is for χer .
All the values are measured at the pressure peak gradient region where ψ = 0.855. In both panels, the dashed curves are time averaged at
the ELM crash phase and the solid curves are at the saturation phase.

energy is given by

Ek =
∫

dx3 V 2
E

2
, (17)

Em =
∫

dx3 B2
1

2µ0
. (18)

Figure 12(a) shows the time evolutions of the different mode
n of Ek(n) for case 4. The n = 0 mode shows the much
larger amplitude than the other modes. It indicates that in
this large ELM case, the zonal flow is the dominant part and
regulates the turbulence for the whole simulation time. For
other modes, the blue curve, which stands for the n = 15
mode, is the initial perturbation for nonlinear simulations and
it is dominant at the linear growing phase. Then the nonlinear
mode coupling induces the rapid increase in the other modes.
The zonal flow appears a little earlier than the high-n modes
from t � 14τA, while the other high-n modes appear in the
figure from t � 30τA. From t � 60τA, Ek of the n = 15 mode
start to become comparable to other induced modes except the
zonal flow. The energy amplitudes of these high-n modes are
nearly one magnitude order lower than the zonal energy, which
balances the zonal ion diamagnetic flow because of the zonal
vorticity being set to zero (〈� 〉 = 0) for our ELM simulations.

Table 2. Time interval of ELM crash and saturation phase for
different cases in table 1.

Time interval ELM crash (τA) Saturation (τA)

Case 1 60–80 250–end
Case 2 40–80 250–end
Case 3 30–70 250–end
Case 4 40–80 250–end
Case 5 70–130 330–end

Figure 12(b) is the time traces of Ek(n) for case 2 with
small ELM. Different from case 4, the zonal kinetic energy
regulates the turbulence only at the early nonlinear phase, from
t � 40τA to 250τA. In this case, the appearance of the induced
modes are earlier than case 4. The zonal flow grows almost at
the beginning of the simulation and the high-n induced modes
appear from t � 10τA. After t � 250τA, all the high-n modes
show comparable amplitudes with zonal flow.

Based on [34], the definition of the energy transfer to
the zonal flow is obtained from the nonlinear (0, 0) Fourier
component of equation (1) as

d

dt

∫
dxmini0

V 2
E00

2
= T R

00 + T ID
00 + T M

00 + T C
00, (19)
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Figure 12. (a) Time traces of the kinetic energy Ek(n) for each
toroidal mode n of case 4 in table 1. The zonal flow dominates the
turbulence from the start of nonlinear phase. (b) Time traces of the
kinetic energy Ek(n) for each toroidal mode n of case 2. The zonal
flow only dominates the turbulence at the early nonlinear phase.

where

T R
00 = −

∫
dxφ00

(
1

B0
b × ∇⊥φ · ∇U ′

)
00

, (20)

T ID
00 = −

∫
dxφ00

mi

B0Zie

[
1

B0
b × ∇⊥φ · ∇

(∇2
⊥pi1

)]
00

,

(21)

T M
00 = −

∫
dxφ00

[
B2

0∇‖

(∇2
⊥ψ

µ0

)]
00

, (22)

T C
00 =

∫
dxφ00 (2b × κ · ∇pi1)00 (23)

are the contribution to Reynolds stress, the ion diamagnetic
term, Maxwell stress and the curvature term. Note that
U ′ = ni0

mi
B0

∇⊥φ + mi
B0

∇⊥φ · ∇⊥ni0 is defined as the vorticity
without ion diamagnetic drifts. Note that the contribution of
the gyro-viscous terms is not included in this discussion. The
time evolutions of the energy transfer to zonal flow is plotted
in figure 13. Panel (a) is about the P–B unstable case 4 and
panel (b) shows case 2 with small ELMs. In both cases, the
Reynolds stress T R

00 is positive and drives the flow during the
whole process of our simulations, while the ion diamagnetic

term and curvature term are negative and suppress the growing
of the zonal flow. In panel (a), the Maxwell stress drives the
flow just before t � 70τA and then becomes negative. The
cyan curve in figure 13 indicates that the total contribution of
the Reynolds stress and the ion diamagnetic term mainly drives
the zonal flow after t � 70. The total effects of these four terms
suppress the zonal flow especially from t ∼ 60τA to 130τA, as
the purple curve shows, and this is the reason why the kinetic
zonal energy Ek(0) decreases dramatically after ELM crashes
at this period, as shown in figure 12(a). For panel (b), the
total contribution of the four terms are just oscillating around
0 from t � 100τA. Only a short period of negative value can
be found from t ∼ 50τA to 70τA, which is correlated with
the small decrease in Ek(0) at the early nonlinear phase, as the
black curve shows in figure 12(b).

4. Summary

In this paper we develop the six-field two-fluid model under
the BOUT++ framework from Braginskii equations. The first-
part work for the strong unstable case is to benchmark with the
previous three-field and five-field two-fluid model in BOUT++.
Although there are several additional physics, such as ion
acoustic waves, thermal conductivities, Hall effects, toroidal
compressibility and electron–ion friction, in this six-field
model, they do not qualitatively change the linear instability
properties and early phases of ELM dynamics. The dominant
physics in ELMs are P–B instability, ion diamagnetic effects,
resistivity and hyper-resistivity, which can be well described
by the three-field model. Therefore, the three-field model is
good enough to simulate ELMs. However, the six-field two-
fluid model is still very important and necessary to simulate
the power depositions on the plasma-facing component, self-
consistent turbulence and transport between ELMs for the
rebuilding of the pedestal.

The second part focuses on equilibrium 1. This
equilibrium can be stable for P–B modes when ion diamagnetic
effects are strong enough for low ion density. We simulated five
different initial temperature profiles with the same pressure and
current profiles under this equilibrium. Three cases, cases 3, 4
and 5 are P–B unstable, case 2 is destabilized by the additional
terms and case 1 is the resistive ballooning turbulence. Our
simulations show that the ELM size is smaller for the low
density case. The ion channel contributes most to the total
ELM size and the particle loss of ions contributes the least.

The third part is about the radial transport in the saturation
phase after ELM crashes. The radial particle flux �ir is closely
related to the formation of ELM filaments. In our simulation,
the first peak of �ir represents the burst of ELM filaments.
The second peak means the disappearance of filaments. The
third peak indicates the micro-burst of filaments after the first
strong one. After these three peaks, there are nearly no peaks
in �ir and the system goes to saturation. The radial transport
coefficients at the ELM crash phase show good agreement
with the ELM size on each channel. This indicates that the
ELM size is mainly determined by the energy loss at the crash
phase, the contribution of the quasi-steady state after the ELM
crash is negligible. During the saturation phase, the typical
values for radial transport coefficients are Dr ∼ 200 m2 s−1,
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Figure 13. (a) Evolutions of energy transfer to zonal flow by the Reynolds stress T R
00 (black curve), the ion diamagnetic term T ID

00 (green),
the Maxwell stress T M

00 (red) and the toroidal curvature T C
00 (blue) in the vorticity equation of case 4. The cyan curve is the total contribution

of T R
00 and T ID

00 and the purple one is for the total of all four terms. (b) The evolutions of energy transfer to the zonal flow for the small ELM
case 2. The vertical axes is the energy transfer rate (W/m2).

χir ∼ χer ∼ 40 m2 s−1 in the range of nsep/nG as discussed in
this paper.

The turbulent zonal flow regulates the turbulence from the
ELM crash phase to the nonlinear quasi-steady states for large
ELM cases; while for small ELM cases, the turbulent zonal
flow is just dominant at the early nonlinear phase. The energy
transfer analysis shows that the Reynolds stress is the main
driving force to the zonal flow, and the ion diamagnetic drifts
are the main suppressing force.
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